
http://www.tutorialspoint.com/data_structures_algorithms/stack_algorithm.htm Copyright © tutorialspoint.com

DATA STRUCTURE - STACKDATA STRUCTURE - STACK

A stack is an abstract data type ADT, commonly used in most programming languages. It is named
stack as it behaves like a real-world stack, for example − deck of cards or pile of plates etc.

A real-world stack allows operations at one end only. For example, we can place or remove a card
or plate from top of the stack only. Likewise, Stack ADT allows all data operations at one end only.
At any given time, We can only access the top element of a stack.

This feature makes it LIFO data structure. LIFO stands for Last-in-first-out. Here, the element which
is placed insertedoradded last, is accessed first. In stack terminology, insertion operation is called
PUSH operation and removal operation is called POP operation.

Stack Representation
Below given diagram tries to depict a stack and its operations −

A stack can be implemented by means of Array, Structure, Pointer and Linked-List. Stack can
either be a fixed size one or it may have a sense of dynamic resizing. Here, we are going to
implement stack using arrays which makes it a fixed size stack implementation.

Basic Operations
Stack operations may involve initializing the stack, using it and then de-initializing it. Apart from
these basic stuffs, a stack is used for the following two primary operations −

push − pushing storing an element on the stack.

pop − removing accessing an element from the stack.

When data is PUSHed onto stack.

To use a stack efficiently we need to check status of stack as well. For the same purpose, the

http://www.tutorialspoint.com/data_structures_algorithms/stack_algorithm.htm

following functionality is added to stacks −

peek − get the top data element of the stack, without removing it.

isFull − check if stack is full.

isEmpty − check if stack is empty.

At all times, we maintain a pointer to the last PUSHed data on the stack. As this pointer always
represents the top of the stack, hence named top. The top pointer provides top value of the stack
without actually removing it.

First we should learn about procedures to support stack functions −

peek
Algorithm of peek function −

begin procedure peek

 return stack[top]

end procedure

Implementation of peek function in C programming language −

int peek() {
 return stack[top];
}

isfull
Algorithm of isfull function −

begin procedure isfull

 if top equals to MAXSIZE
 return true
 else
 return false
 endif

end procedure

Implementation of isfull function in C programming language −

bool isfull() {
 if(top == MAXSIZE)
 return true;
 else
 return false;
}

isempty
Algorithm of isempty function −

begin procedure isempty

 if top less than 1
 return true
 else
 return false
 endif

end procedure

Implementation of isempty function in C programming language is slightly different. We initialize
top at -1, as index in array starts from 0. So we check if top is below zero or -1 to determine if stack
is empty. Here's the code −

bool isempty() {
 if(top == -1)
 return true;
 else
 return false;
}

PUSH Operation
The process of putting a new data element onto stack is known as PUSH Operation. Push operation
involves series of steps −

Step 1 − Check if stack is full.

Step 2 − If stack is full, produce error and exit.

Step 3 − If stack is not full, increment top to point next empty space.

Step 4 − Add data element to the stack location, where top is pointing.

Step 5 − return success.

if linked-list is used to implement stack, then in step 3, we need to allocate space dynamically.

Algorithm for PUSH operation
A simple algorithm for Push operation can be derived as follows −

begin procedure push: stack, data

 if stack is full
 return null
 endif

 top ← top + 1

 stack[top] ← data

end procedure

Implementation of this algorithm in C, is very easy. See the below code −

void push(int data) {
 if(!isFull()) {
 top = top + 1;
 stack[top] = data;
 }else {
 printf("Could not insert data, Stack is full.\n");
 }
}

Pop Operation
Accessing the content while removing it from stack, is known as pop operation. In array
implementation of pop operation, data element is not actually removed, instead top is
decremented to a lower position in stack to point to next value. But in linked-list implementation,
pop actually removes data element and deallocates memory space.

A POP operation may involve the following steps −

Step 1 − Check if stack is empty.

Step 2 − If stack is empty, produce error and exit.

Step 3 − If stack is not empty, access the data element at which top is pointing.

Step 4 − Decrease the value of top by 1.

Step 5 − return success.

Algorithm for POP operation
A simple algorithm for Pop operation can be derived as follows −

begin procedure pop: stack

 if stack is empty
 return null
 endif

 data ← stack[top]

 top ← top - 1

 return data

end procedure

Implementation of this algorithm in C, is shown below −

int pop(int data) {

 if(!isempty()) {
 data = stack[top];
 top = top - 1;
 return data;
 }else {
 printf("Could not retrieve data, Stack is empty.\n");
 }
}

For a complete stack program in C programming language, please click here.
Loading [MathJax]/jax/output/HTML-CSS/jax.js

/data_structures_algorithms/stack_program_in_c.htm

